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Abstract - In this paper we present a recursive Bayesian 

solution to the problem of joint tracking and classification of a 
target modeled at a distance by an equivalent magnetic dipole. 
Tracking/classification of a magnetic dipole from noisy 
magnetic field measurements involves the modeling of a 
non-linear non-Gaussian system. This system allows for 
complications due to multiple directions of arrival and target 
maneuver. The determination of target position, velocity and 
magnetic moment is formulated as an optimal stochastic 
estimation problem, which could be solved using a sequential 
Monte Carlo based approach known as the particle filter. In 
addition to the conventional particle filter, the proposed 
tracking and classification algorithm uses the unscented 
Kalman filter (UKF) to generate the transition prior as the 
proposal distribution. 
 
 

I. INTRODUCTION 
 

Precise determination of target motion parameters, i.e. 
position, velocity, and target classification, are primary 
concerns in automated surveillance systems. This paper 
presents the use of a sequential Monte Carlo based 
statistical signal processing method, known as particle filter, 
for tracking and classifying a magnetic target.  

A target containing ferromagnetic material can be 
adequately modeled at a distance by an equivalent magnetic 
dipole moment. This magnetic target can be observed by 
means of tri-axial magnetometers that measure the variation 
of the magnetic field components as a function of time as it 
passes. Of interest is the inverse problem of the 
determination of the position and magnetic parameters of 
the target at time step k from its magnetic signature 
collected up to and including time k.  

One approach to solve this problem makes use of the 
recursive Bayesian estimation (filtering) technique. The 
problem is formulated in state-space form where the state 
variables are the position, velocity and magnetic moment of 
the target. Let define xk as the state of the system at time 
step k, and z1:k  = {z1, z2, …, zk} as the observation 
(measurements) history of a system from time 1 to k. 
Because of either noise in the state evolution process or 
uncertainty as to the exact nature of the process itself, the 
state vector xk is generally regarded as a random variable. In 
the Bayesian filtering technique, one attempts to construct 
an estimate of the posterior probability density function 
(pdf), p(xk | z1:k). Since all information provided by z1:k is 
conveyed by the posterior density, it may be said to be the 
complete solution to the estimation problem. A recursive 
Bayesian algorithm imposes the constrain that the estimate 
of p(xk | z1:k) should be generated solely from the previous 

posterior density, p(xk-1 | z1:k-1), and the most recent 
measurement zk. In this way, it is not necessary to store the 
complete data set or to reprocess existing data when a new 
measurement becomes available.  

The recursive propagation of the posterior density is 
only a conceptual solution that can be determined 
analytically only in a restrictive set of cases. When the 
analytical solution is intractable, a Monte Carlo based 
approach to recursive Bayesian filtering called the particle 
filter, is one method that approximates the optimal Bayesian 
solution. In the Monte Carlo method, a set of random 
samples (particles) are drawn from a target distribution such 
as p(x | z). In general, this distribution is not known. We will 
use q(xk | z1:k) ≠ p(xk | z1:k) to denote a proposal distribution 
from which samples can be drawn. The main drawback of 
the conventional particle filter is that it uses transition prior, 
p(xk | xk-1), as the proposal distribution. The transition prior 
does not take into account current observation data. To 
overcome this difficulty, the unscented Kalman filter (UKF) 
was proposed to generate better proposal distributions by 
taking into consideration the most recent observation. 
 
 

II. UNSCENTED PARTICLE FILTER 
 
A. Recursive Bayesian Estimation 
 

The tracking problem requires estimation of the state 
vector (target co-ordinates, velocity, magnetic moment) of a 
system that changes over time using a sequence of noisy 
measurements (observations) made on the system. For the 
specific application regarding this study, the target 
dynamics (the system model) is described by a linear 
equation, f(•), while the system observation (the 
measurement model) equation, h(•), is highly non-linear. 
We assume that these models are available in a probabilistic 
form:  

 
(1) 

 
(2) 
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where xk is the nx-dimensional state vector of the system at 
time step k, zk is the nz-dimensional observation vector, and 
vk and wk are vectors representing the process and 
measurement noise, respectively. They have the dimensions 
nv and nw. It is assumed that the noise vectors are i.i.d. and 
independent of current and past states. 

From the Bayesian perspective, it is required to estimate 
p(xk | z1:k) assuming that the pdf at time (k-1), p(xk-1 | z1:k-1), 
is available. The first step in this process is called prediction 

 



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
2005 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2005 to 00-00-2005   

4. TITLE AND SUBTITLE 
Unscented Particle Filter for Tracking a Magnetic Dipole Target 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Defence R&D Canada -Atlantic,PO Box 1012,Dartmouth, NS,CA,B2Y 
3Z7 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
In this paper we present a recursive Bayesian solution to the problem of joint tracking and classification of
a target modeled at a distance by an equivalent magnetic dipole. Tracking/classification of a magnetic
dipole from noisy magnetic field measurements involves the modeling of a non-linear non-Gaussian system.
This system allows for complications due to multiple directions of arrival and target maneuver. The
determination of target position, velocity and magnetic moment is formulated as an optimal stochastic
estimation problem, which could be solved using a sequential Monte Carlo based approach known as the
particle filter. In addition to the conventional particle filter, the proposed tracking and classification
algorithm uses the unscented Kalman filter (UKF) to generate the transition prior as the proposal 
distribution. 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

18. NUMBER
OF PAGES 

4 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



 

 

and makes use of equation (1), which is assumed to describe 
a Markov process of order one: 

 
(3) 
 

The second step, the measurement update, uses the most 
recent observation to produce the desired pdf via Bayes’ 
rule:  

 
 

(4) 
 

where the second equation is the normalization constant. 
Once the posterior pdf is determined, it is straightforward 
conceptually to produce any desired statistic of xk. For 
instance, the minimum mean-square error (MMSE) 
estimate of the current state could be found by computing 
the conditional mean: 

 
(5) 

 
 The conditional covariance matrix is obtained in a 

similar way: 
 

(6) 
 
In general, the recursive propagation of the posterior 

density cannot be determined analytically because the 
integrals in (3) and (4) do not have closed-form solutions. 
Solutions do exist in a restrictive set of cases. For example, 
if f(•) and h(•) are linear functions and if Gaussian 
distributions are assumed for x, v, and w, the estimation of 
states is reduced to the well-known Kalman filter. 

The problem of tracking a magnetic dipole does not 
satisfy the original Kalman filter requirements because the 
system observation is non-linear. Moreover, because the 
target can approach the sensors from any direction and can 
maneuver at any time, the true posterior density is 
multi-modal and a Gaussian description will be inaccurate.  

In order to deal with non-linear systems and/or 
non-Gaussian reality, two categories of techniques have 
been developed: parametric and non-parametric. The 
parametric techniques are based on improvements of the 
Kalman filter. These filters (for example, extended and 
unscented Kalman filters) can handle non-linear equations, 
but they implicitly approximate the posterior density as 
Gaussian. The non-parametric techniques are based on 
Monte Carlo simulations and are the subject of the present 
study. These filters assume no functional form, but instead 
use a set of random samples (particles) to estimate the 
posteriors. The advantage is that the particle filters can 
accommodate simultaneous alternative hypotheses that can 
describe a multi-modal distribution well. 
 
B. Particle Filter Implementation 
 

The basic idea of the Monte Carlo based approach to an 
intractable Bayesian filtering case is to approximate an 

unknown distribution, p, by a set of properly weighted 
particles drawn from a known distribution, q.  In this way, 
the difficult problem of distribution estimation is converted 
to an easy problem of weight estimation. The exact form of 
the proposal distribution q is a critical issue in designing the 
particle filter and is usually approximated to facilitate easy 
sampling.  

A numerical approximation to the recursive Bayesian 
filtering method given by the equation (3) and (4) is the 
following algorithm: 
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1. Initialization: sample N particles xk
(i), i = 1, 2, …, N, 

from the proposal distribution. The proposal 
distribution can be the transition prior as used in the 
conventional particle filters, or more advanced 
distributions like the one used in this study. 

2. Measurement update: update the importance weights. 
The Bayesian sequential importance sampling (SIS) 
procedure gives a recursive calculation of the 
normalized weight [1]: 
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As an approximation to (5) take: 
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3. Re-sampling is a necessary step introduced in particle 

filtering algorithms to reduce the degeneration of 
samples. In practice it was noticed that, after a few 
iterations, one of the importance weights tends to one, 
while the others become zero. To avoid the degeneracy, 
the sampling importance re-sampling (SIR) method 
selects N samples with replacement from the set xk

(i), 
where the probability to take sample ‘i’ is wk

(i). Then set 
wk

(i) = 1/N, i = 1, 2, …, N.  
4. Prediction: assuming that the probability of the 

process noise is known, use equation (1) to simulate 
xk+1

(i), i = 1, 2, …, N. 
5. Set k = k +1, and iterate to item 2. 
 
C. The Unscented Kalman Filter 
 

As mentioned, the deficiency of the sequential 
importance sampling (SIS) approximation is that the 
proposal distribution may be very different from the 
posterior distribution, especially if using the transition prior 
as the proposal distribution. An improved proposal 
distribution must incorporate the current observation data 
with the optimal Gaussian approximation of the state.  

In a previous study [2] on the magnetic dipole tracking 
application, it was shown that the unscented Kalman filter 



 

 

(UKF) is the best Kalman filter for the non-linear systems. 
The UKF is so named because it implements the Kalman 
recursion using the sample points provided by the unscented 
transform. The unscented transform deterministically 
generates a set of points that have a certain mean and sample 
covariance. The non-linear function is then applied to each 
of the sample points, yielding a transformed sample from 
which the predicted mean and covariance are calculated. 
The estimate of the conditional mean provided by the UKF 
is shown to be correct up to the second order of its Taylor 
series expansion. Reference [3] gives the implementation of 
UKF algorithm.  

 Because the UKF is the best in accurately propagating 
the mean and covariance of the Gaussian approximation to 
the state distribution, it can be used to generate the proposal 
distribution for the particle filter. In this way, one obtains a 
parametric/non-parametric hybrid filter called the 
unscented particle filter (UPF). 

 
 

III. MAGNETIC TARGET TRACKING 
 
 
The mathematical model used for the target is a moving 

magnetic dipole. The target is fully characterized by its 
motion parameters (position and velocity) and the value of 
the magnetic dipole moment. Its maneuvers and/or a 
non-linear trajectory are modeled in the state update 
through the process noise on velocity. The simplifying 
assumption made is that the target is moving horizontally. 
Also the magnetic mass of the target remains constant 
during the measurement and can be estimated from the 
values of the equivalent magnetic dipole moment. 

Let consider that the time increment between the data 
samples is ∆t seconds, mS is the magnetic moment vector of 
the dipole expressed in kA-m2, v is the velocity vector in 
m/sec, and r is the position vector from the observation 
point to the dipole center in meters. For a full 
characterization of the target, the entire system at time step k 
can be represented by the state vector: 

 
(8) 

 
The discrete equations of target motion are obtained 

using the piece-wise approximation: 
 
 

 
(9) 

 
 
 

and similar relations exist for the Y and Z components (vZ = 
0). Tri-axial magnetic sensors produce the observation data. 
The magnetic flux density vector B at a given point due to a 
magnetic dipole is given by the formula: 
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where µ is the permeability of the medium (= 4π10-7), and 
<•,•> is the inner product operator. In the above formula, all 

vectors are defined in the same coordinate system, which 
normally are the sensor coordinates. Because the desired 
magnetic moment, mS, is related to the ship reference frame, 
it is necessary to apply a rotation: 
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For a single sensor, the measurement vector at time k 
has the form: 

                           (12) 
 
These are the process and measurement equations used 

by the Bayesian filter for tracking and classification of a 
magnetic dipole. As one can see, the process function f(•) in 
equation (1) is linear, and the measurement function h(•) in 
equation (2) is highly non-linear. 

 
 

IV. SIMULATED EXPERIMENT 
 
 
One of the problems encountered in designing an 

experiment is the system observability. A system is 
observable when its state vector can be reconstructed from 
the measurements of its output. Because the magnetic flux 
density depends on both states m and r, it is not possible to 
reconstruct these (six) states from a single sensor, which 
produces at most 3 data points. The 2-observers situation 
allows the complete problem to be solved [4], i.e. to 
determine unambiguously the horizontal position, speed 
and depth, and the equivalent dipole moment of the moving 
target.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

Fig. 1. Estimated (■) and true (-) X and Y values. 
 

Simulated observations are used in this study: a true 
non-linear (U-turn) trajectory is assumed for a magnetic 
dipole having a known moment, observations are computed 
using equation (11) and (10), and contaminated with 
Gaussian noise with the SNR of 10 dB. Two tri-axial 
magnetometers (observers) placed on the seafloor have the 
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positions given by s1 = (0, 0, 0) and s2 = (0, 50, 0) meters, 
respectively. The target is represented by a magnetic dipole 
with a constant moment over time, mS = (50, -5, 125) kA•m2. 
The target approaches the observers with a time variable 
velocity, and at a distance from the bottom of 20m. Discrete 
observations (12) are taken at a sampling period of one 
second. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Estimated (■) and true (-) Z values. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Estimated (■) and true (-) mZ values. 
 
In applying the filtering technique to the system, the 

initial conditions and the noise covariance matrixes need to 
be specified. In the initialization step, the particles should be 
drawn from an unknown proposal distribution. The basic 
assumption is that the target can approach the sensors from 
any horizontal direction. Therefore, the filter must 
accommodate simultaneous alternative hypotheses until 
they can be disambiguated by future measurements. A 
reasonable initial estimate of the horizontal position is an 
approximate circle around the sensors with a radius of about 
200m from where the magnetic signal becomes sizable. In 
the present example, 36 particles were used with the 
horizontal positions spread over a circle every 10° from 0° 
to 350°. For the vertical position, an initial estimate between 
zero and the approximate water depth can be given. Because 
we have no information about the magnitude of velocity, 
acceleration and magnetic dipole moments, a good initial 

estimate of these vectors are merely the null vectors.  
The initial covariance matrix, P(0|0), gives a measure of 

belief in the initial state estimate. It is assumed that initially 
all the states are un-correlated, so that the matrix is diagonal. 
This matrix is not known and has to be sufficiently large, but 
the initial P(0|0) is forgotten as more data is processed. The 
measurement noise covariance matrix can be estimated 
directly from the actual data and, once calculated, it does 
not change during the filter run.   
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The process noise covariance is zero for a deterministic 
process. However, it was practically proved to be a good 
idea to introduce random perturbations in the target position 
and velocity. These small perturbations account for the 
target maneuvers and prevent divergence, so that the 
process noise covariance may be regarded as a tuning 
parameter of the filter.  

Unscented Particle Filter 

N = 36 particles 
Sensors @ (0 0 0) & (0 50 0)m  

The results are presented in figures 1 to 3 where the true 
values of state variables are plotted together with the state 
estimates obtained from this filter. The performance of the 
UPF is good. 

 
 

V. CONCLUSIONS 
 
 
This study presents the application of the unscented 

particle filter (UPF) in solving the joint problem of tracking 
and classification of a target modeled as an equivalent 
magnetic dipole of arbitrary orientation. The problem is 
formulated in state-space form where the state variables are 
the position, velocity, and magnetic moment of the target. 
The advantage of using the particle filter for this application 
is the flexibility in selecting the initial state vector to cover 
the possible directions of arrival. Imposing the initial state 
vector arbitrarily represents a major limitation when using 
the non-linear Kalman filters. On the other hand, the 
non-linear Kalman filter used in this study, the unscented 
Kalman filter, offers a better proposal distribution than the 
one used in conventional particle filters by taking into 
account the most recent measurement. 
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